
ptr-tidy: Automatic Rejuvenation of Raw Pointers in C++
Artem Usov (2296905U)

April 15, 2021

ABSTRACT
Systems programming involves dynamically requesting mem-
ory which in the C++ language has to be manually managed
by the programmer. However, this leaves the opportunity
for exploitable memory safety errors. Modern C++ recom-
mends that smart pointers are used to automatically manage
resources such as dynamic memory. However, many legacy
programs were been written before these features were intro-
duced to the language. We develop the ptr-tidy tool in or-
der to automatically rejuvenate such programs to use smart
pointers. The tool uses the Clang and LLVM libraries in or-
der to create a componentised and powerful framework which
could be used by other refactoring or rejuvenation tools. We
present a case study and also apply the tool on a number
of open-source C++ libraries from a variety of application
domains to show that the tool can successfully rejuvenate
non-trivial libraries. We discuss the circumstances in which
the tool performs well and the current limitations.

1. INTRODUCTION
Most ordinary computer users demand that the machine

they are using provides them with a responsive, secure and
productive environment to complete their tasks. The pro-
grams that are most responsible for this are complex systems
programs such as the underlying operating system, device
drivers and web browsers. Systems programming involves
memory management, that is dynamically requesting mem-
ory from the operating system to be used and managed by
the program. This is done as the amount of memory that we
need at runtime cannot be known at the time of compilation
of the program. However, doing so creates the opportunity
for memory safety errors [7]. A memory safety error can be
one of:

• Dangling pointer, prematurely freeing memory that is
still in use.

• Double free, freeing memory multiple times.

• Never free, never freeing memory.

There are other categories of memory safety errors such as
buffer overflows which we do not consider in this paper. If
there are memory safety errors in a program, there is the
possibility that it could be exploited by a malicious party
to crash the program, expose sensitive data or gain remote
code execution capabilities [1].

Historically, systems programs were mostly written in C,
C++ or a combination of the two and these remain the
dominant languages. They are lower level languages that
involve manual memory management by the programmer.

It is extremely challenging to ensure that C and C++ pro-
grams contain no memory safety errors as evidenced by
empirical data in industry, where in a presentation at the
Linux Security Summit it was shown that in several popu-
lar projects such as Firefox, macOS, Ubuntu and Android all
had over half of their CVEs 1 attributed to issues with mem-
ory safety [13]. Similarly, in a presentation by Matt Miller, a
security engineer at Microsoft, it is shown that around 70%
of their vulnerabilities that are addressed through security
updates are due to memory safety issues [25].

Unfortunately, simply not using C or C++ is not an op-
tion since their unmanaged nature allows for high perfor-
mance, and therefore the best option for systems with strict
or high requirements. Engineers at both Microsoft [34] and
Mozilla [14] converge on Rust [3] as a possible solution. Rust
is a systems language that offers similar performance as C
and C++ [21], however its linear type system and memory
ownership model guarantee that none of the memory errors
that we are considering can occur. The rewriting of a pro-
gram in a new language, namely from C++ to Rust, is a
colossal undertaking, especially given that Rust has a repu-
tation for being difficult to learn [2]. Instead, modern C++
guidelines encourage the use of smart pointers [8] and the
concept of RAII (Resource Acquisition Is Initialisation) [32]
to create compiler managed resource handles. Their cor-
rect use eliminates the three previously identified classes of
memory safety errors. Yet, we encounter further problems
as C++ programs either do not actively follow this advice,
or are legacy programs which were written before these fea-
tures were introduced to the language.

We therefore propose a solution in the form of a tool, ptr-
tidy [35], to analyse and automatically refactor programs
to follow the recommended use of smart pointers where the
analysis can determine that such a change is correct and
does not change the runtime behaviour of the program.

We provide a motivating example in Figure 1 where the
initial version of the function has several control flow state-
ments that could cause the Circle object to never be freed.
The example can seem trivial as all the possible executions
paths of the program are easy to visualise, but can suddenly
become rather non-trivial if the conditions in the if state-
ment become calls into external libraries, which may throw
an exception and cause the delete statement to again not
be reached.

2. RELATED WORK
Our work closely relates to work done around the field

of source code rejuvenation, as defined by Pirkelbauer et al.
[27]. We exactly aim to replace outdated coding patterns

1https://cve.mitre.org/

1

https://cve.mitre.org/

void foo(int x) {

Shape *p = new Circle{Point{0,0},10};

// ...

if (x<0) throw Bad_x{}; // potential leak

if (x==0) return; // potential leak

// ...

delete p;

}

void foo(int x) {

std::unique_ptr<Circle> p =

std::make_unique<Circle>(Point{0,0},10);↪→

// ...

if (x<0) throw Bad_x{}; // delete p inserted

if (x==0) return; // delete p inserted

// ...

// delete p inserted

}

Figure 1: Example of a memory leak using manual manage-
ment and how smart pointers correct this problem. Lines 4
and 5 show how interruptions in the program control flow
can mistakenly cause memory leaks as the delete statement
is never reached. Smart pointers correct this as the compiler
automatically inserts delete statements at all necessary loca-
tions at compile time. All necessary headers are omitted for
brevity

with newer, higher-level abstractions, as well as fitting the
notion that this tool would be applied once to a codebase,
rather than be a reoccurring task. We will however use the
terms rejuvenating and refactoring interchangeably in this
paper as refactoring is a term that most developers are more
familiar with to convey code changes in order to improve the
overall quality.

We believe research in this area is going to increase, as lan-
guages move and evolve much quicker than can be supported
in enterprise environments [26, 11], resulting in accumulat-
ing technical debt. This is supported by the fact that other
relevant work has been completed on this subject.

First and foremost, we have evidence that this is a problem
that exists in industry through a paper by Wright et al.
[37] which describes a tool used at Google for running such
rejuvenations across a large C++ codebase. Wright et al.
[37] show an example of running a simple rejuvenation of
upgrading an API call. They use Clang for the parsing of
code into a syntax tree and traverse the tree to identify
and perform simple refactorings. Their flexible design allows
them to implement many different simple refactorings using
the same tool, rather than the focus we have for a single
more complex refactoring goal.

Secondly, there has been separate academic research into
rejuvenation tools such as the work by Hück et al. [15] and
Kumar et al. [18]. The former also uses the Clang driven
approach like Wright et al. [37], while the latter uses a repre-
sentation called IPR [9], which is a general and efficient data
structure for representing C++ programs. We have not eval-

uated IPR as a representation compared to the use of Clang,
but we can comment that whilst we appreciate the aim of the
project to create a efficient and compiler-independent repre-
sentation, the greater amount of documentation for Clang,
the continuous support for new C++ standards and non-
standard language extensions as well as being the choice of
several other successful projects leads us to believe that it
may be the more suitable and mature option for any such
research.

There has also been industry interest in automatic rejuve-
nation tools between languages rather than within the same
language. This is done either to increase the use of a new,
improved language by creating tools to aid transition, or in
order to reuse existing compilers. For example, the Kotlin
language team created the J2K 2 transpiler in order to en-
tice Java developers to switch to a language with improved
language features such as null safety [24]. Similarly, several
new languages such as Typescript 3 and Dart 4 have been
recently developed which were designed not to be used by
themselves, but to be transpiled to the popular Javascript
language. These languages aim to solve shortcomings of the
target language, whilst reusing the existing mature and ef-
ficient compilers or interpreters.

3. BACKGROUND

3.1 Using Smart Pointers for Memory Man-
agement

Generally, pointers are used to give a program indirect
access to a resource that cannot be directly included in the
program itself, such as allocated memory or a file. Pointers
can also be used to pass large resources to functions without
needing to create a copy, which would have a performance
impact.

Pointers can be created for objects both on the stack and
the heap [32]. The stack is a small memory store automat-
ically managed for us by the compiler and is suitable for
placing object whose size is known at compile time, such as
simple integers like loop counter variables. However, when
objects must live beyond the lifetime of the current function
call or if we do not know the size of an object until runtime,
then we must store these objects on the heap, also called the
free store. Unlike the stack, the memory on the heap must
be explicitly managed by the programmer.

However Stroustrup claims that pointers to objects allo-
cated on the free store are dangerous and a plain old pointer,
or raw pointer as we will refer to them, should not be used
to represent ownership of such objects. [33].

Instead we can use smart pointers [8] and the concept
of RAII (Resource Acquisition Is Initialisation) [32] to cre-
ate resource handles with no, or very little added overhead.
RAII means that the management of a resource, namely its
acquisition and release, is bound to its lifetime. In the sim-
plest case, this means that when a resource exits the scope
of a function or method, it is released automatically. We
can see how smart pointers and RAII work in our motivat-
ing example in Figure 1. Even though the Circle object
is placed on the heap, the compiler can manage the smart

2https://github.com/JetBrains/kotlin/tree/master/
j2k
3https://www.typescriptlang.org/
4https://dart.dev/

2

https://github.com/JetBrains/kotlin/tree/master/j2k
https://github.com/JetBrains/kotlin/tree/master/j2k
https://www.typescriptlang.org/
https://dart.dev/

pointer for us so that in all the cases where the lifetime of
the object ends, the object will be released.

The first type of smart pointer is a unique pointer, which
has only a single unique owner at any time and therefore is
ideal for resources which may not be copied. The resource
managed by a unique pointer is released when execution of
the program exits the scope that the owner of the resource
is contained in. The ownership of a unique pointer can be
transferred between variables using std::move which moves
the ownership from one variable to another, making the orig-
inal owner invalid.

The second type of smart pointer is a shared pointer which
is used for resources that may not necessarily have a single
unique owner and so several owners share ownership to the
resource. Reference counting [6] is used to ensure that after
the last owner loses access to the resource, it will finally
be freed. Shared pointers are suitable to be used in most
situations and such reference counted pointers are used by
default for all values in the Python 5 and Swift languages 6.

3.2 Clang and LLVM
As seen from section 2, much similar research uses Clang

and thus LLVM. LLVM [20] is a compiler infrastructure
project consisting of several compiler and toolchain tech-
nologies.

LLVM is centrally designed around a language indepen-
dent intermediate representation (IR), which can be created
by a number of language front-ends and is used by a num-
ber of back-ends to generate machine code. The LLVM IR is
a language-independent, static single assignment (SSA) [28]
representation of a program. Variables in SSA form can
only be assigned once, which allows us to efficiently gen-
erate definition-usage graphs, and allows for fast and opti-
mised analysis algorithms to be written. Programs can then
be optimised by applying portable and reusable transforma-
tions on the IR.

Any improvement in back-end machine code generation,
as well as any new or improved IR optimisations therefore
benefit all of the language front-ends. It can be seen that
this allows for a very modular and powerful design, as shown
in Figure 2.

Clang [19] is a LLVM language front-end for C, C++ and
a variety of other extensions such as OpenGL. By using the
LLVM infrastructure, it allows for faster and more efficient
compilation of C++ compared to existing, older compilers
such as the GNU Compiler Collection 7 (GCC) [19]. How-
ever, most importantly for our research, the design of GCC
makes it unsuitable for integration in other projects such as
analysis tools, whereas Clang allows access to several anal-
ysis tools as well as the Clang abstract syntax tree (AST)
and parser internals via a standard API such as consumers
and visitors [10].

Further more, Clang also provides the LibTooling C++ li-
brary for the creation of tools that leverage the Clang pars-
ing front-end and AST. The Clang AST is different from
ASTs produced by some other compilers in that it closely
resembles the written C++ code 8. For example, we can

5https://docs.python.org/3/c-api/refcounting.html
6https://docs.swift.org/swift-book/LanguageGuide/
AutomaticReferenceCounting.html
7https://gcc.gnu.org/
8https://clang.llvm.org/docs/
IntroductionToTheClangAST.html

see in Figure 3 that the AST stores much syntactic as well
as semantic information in the form of source code locations
and variable initialisation styles. The LLVM authors remark
that this makes it very suitable for refactoring tools.

4. METHODOLOGY

4.1 Parsing
The first capability our tool needs is to be able to parse

C++ code. Doing this ourselves would be an undertaking
that would take a significant amount of time in order to
create a complete parser due to the size and complexity of
the C++ language. Therefore it was decided early to use an
existing parser. The information in subsection 3.2 outlines
why Clang is the most suitable parser to use, with the other
benefits that it brings such as the LibTooling library.

4.2 Analysis
Next, our tool would need to be able to identify specifically

which pointers are suitable for refactoring into smart point-
ers. An unique pointer is a smart pointer that represents
a single unique owner of a region of memory at any point
in time. We will therefore need to develop a static analysis
algorithm to identify the maximum number of owners a re-
gion of memory has throughout all points of the program.
If a memory region has at most a single owner, then we can
refactor the initialising raw pointer to be a unique pointer,
and otherwise to a shared pointer. This analysis will need
to ensure that its result is correct, and will inevitably have
to make some conservative assumptions about the program.

A key intuition is that a region of memory, subsequent to
its initialisation, is only able to gain additional owners if ac-
cess to the region of memory is shared to another variable,
that is if a pointer to this memory is copied to a another
pointer, at which point the original owner is no longer the
unique owner. If we copy the pointer to a global variable,
the variable could suddenly be read by any other running
threads in the program, so we have to take a conservative de-
cision that the memory no longer has a single unique owner.
If we copy the pointer to a local variable, then if the original
variable remains in use, the memory will have two unique
owners. However if the original pointer is not used beyond
being copied, this could actually be modelled as a transfer
of ownership, and the memory will still have a single unique
owner at all points of the program. We show this intuition
in Figure 4, where the memory region 0001 is not suitable
for being managed by a unique pointer, whilst region 0003

is.
We can formalise our key intuition by introducing the con-

cept of escape analysis. Escape analysis is used to determine
whether an object escapes or is accessible from outside the
method or thread that created the object [5]. It has been
used in languages such as Java [5] to determine whether an
object which is created within a method escapes. If it does
not escape, meaning it is only used locally in the method,
then the object can be allocated on the stack rather than
the heap as a performance optimisation. LLVM also uses
escape analysis for a similar kind of optimisation 9.

It is now apparent that the invariant of the unique pointer
is only violated when:

9https://github.com/llvm/llvm-project/blob/main/
llvm/lib/Analysis/CaptureTracking.cpp

3

https://docs.python.org/3/c-api/refcounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://gcc.gnu.org/
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Analysis/CaptureTracking.cpp
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Analysis/CaptureTracking.cpp

C++ ClangClang
AST

Swift swiftcSwift AST Swift IL

other
languages Other Frontend Compilers

LLVM
IR

LLVM
compiler & optimiser

ARM

x86

other

Figure 2: LLVM design diagram showing how language front-ends create LLVM IR that can be optimised and then used by an
architecture back-end, such as x86 to create a machine code executable.

int main() {

int a = 4;

return a;

}

TranslationUnitDecl

FunctionDecl
line:1:5 main 'int ()'

CompoundStmt

DeclStmt
line:2:5

VarDecl
a 'int' cinit

IntegerLiteral
'int' 4

ReturnStmt
line:3:5

ImplicitCastExpr
LValueToRValue

DeclRefExpr
Var 'int' 'a'

Figure 3: Example of converting C++ code to the Clang AST.
The Clang AST is rich in information and could be used to
reconstruct the original C++ code snippet.

Memory

0002
0003
0004

use

 int *a = new int(0);
 int *b = new int(0);

int foo() {

 int *c = a;
 printf("%p %p", a, c);

use
 int *d = b;
 return *d
}

0005

0001

Figure 4: Both the variables a and c end up pointing to mem-
ory address 0001. Similarly variables b and d point to address
0003. The memory at 0001 is used through two different
pointers on line 5, meaning that it is not uniquely owned by
a single owner. However, address 0003 does have a unique
single owner at any time in the program, shown by the single
incoming arrow to the memory region. Therefore the initiali-
sation of variable d can be modelled as an ownership transfer
from b

• a pointer escapes, as then we do not know where or
how the pointer may be used, so we must take a con-
servative approach and assume the memory region no
longer has at most a single unique owner.

• a pointer does not escape but access to the memory is
shared rather than transferred between local variables.

4.3 Analysis Target
The existing escape analysis in LLVM is implemented to

operate on LLVM IR code, as the IR representation, as men-
tioned in subsection 3.2, is well suited for efficient analysis
algorithms. However, much of the existing work in section 2
use Clang and the Clang AST to perform their parsing, anal-
yses and their source code refactoring.. We however propose
an improved novel design which uses the Clang AST for pars-
ing and refactoring and the LLVM IR for efficient analysis.

For the same input file, we can use the LibTooling li-
brary to generate an AST and IR in-memory representation.
Then, for any variable declaration (VarDecl) in the Clang
AST which allocates new memory on the heap, we locate
this declaration in the IR. This is possible as we can instruct
Clang to not discard variable names using a fno-discard-

4

; Function Attrs: noinline norecurse nounwind

optnone↪→

define i32 @main() #0 {

entry:

%retval = alloca i32, align 4

%a = alloca i32, align 4

store i32 0, i32* %retval, align 4

store i32 4, i32* %a, align 4

%0 = load i32, i32* %a, align 4

ret i32 %0

}

Listing 1: The LLVM IR module representation of the C++
code in Figure 3. Listing has been summarised for clarity.
The variable on line 5 can be matched to the variable a in Fig-
ure 3 by matching the function signature and variable name.

value-names flag, and as the combination of function sig-
nature and variable name in the translation unit must be
unique according to the One-definition rule [16].

In Figure 3, given the variable declaration for the variable
a, then as it is not a global variable, we can visit its parent
nodes in the AST until we reach a FunctionDecl. We can
then use the name of the FunctionDecl to find the corre-
sponding function declaration in the IR module, which can
be seen in Listing 1. Note that although the main function
name corresponds exactly, other function names in the IR
module will have mangled names 10. We again use Clang
library functions to mangle function names if necessary so
they can be found in the IR. Given the IR function decla-
ration, we can find the corresponding IR value of our initial
variable a by finding the name of the variable inside its sym-
bol table. This IR value can then be used to perform our
analysis.

4.4 Choice of Escape Analysis Algorithm
The initial choice of escape analysis algorithm is the ex-

isting LLVM algorithm mentioned in subsection 4.2. As it is
already developed for use on LLVM IR, it is therefore trivial
to integrate into the tool which allows us to quickly create
a minimal viable product. This allowed for rapid successful
prototyping of the tool and therefore reduces risk of the cho-
sen design being unsuitable by following rapid development
processes [22]. We show in subsection 4.6 that the design of
our tool means that the initial choice of algorithm will not
place a limit on the final accuracy or power of the tool.

Investigation of the algorithm shows that it is a conser-
vative analysis with some limits on the analysis complexity
so that it does not greatly increase Clang compilation time.
The analysis uses the definition-usage graph of the value be-
ing analysed to add all the instructions that use the value
to a work queue. Each item in the work queue is then pro-
cessed and the algorithm dispatches on the type (opcode)
of the IR instruction. It is then checked whether each in-
struction within the context that it is being used in could
cause the value to escape. The key limitation that we see of
this algorithm is that it is a intraprocedural analysis. Point-
ers are very often used across function boundaries and the
conservative decisions the algorithm will take in these situ-
ations might limit the effectiveness of the tool in identifying

10https://www.ibm.com/support/knowledgecenter/en/
ssw_ibm_i_72/rzarg/name_mangling.html

all possible refactoring opportunities.

4.5 Source code rewriting
The analysis gives a result of whether the IR value escapes,

a boolean true or false. For a false result, meaning the
value does not escape, the variable declaration is refactored
into a unique pointer, and otherwise a shared pointer. How-
ever, the rewriting of the source code is identical for both
cases with just the string tokens that replace the original
source code differing. The rewriting was developed using a
rule based approach, using test driven development (TDD)
as this allowed rapid but correct development by continu-
ously being able to check that additional created rules still
cause all the tests to pass, causing no regressions. The five
cases of code (or the rewriting rules) that needs to be rewrit-
ten are:

• The type of a variable declaration

• Variable initialisation or assignment expressions.

• Pointer delete statements.

• Function return types.

• Function call expressions that expect raw pointers.

Rewriting the type of a variable declaration is the easi-
est of all. We can directly replace the type of the variable
declaration node that we already have access to. For ex-
ample for int *ptr, we can extract the type of the vari-
able, and format it into the string "std::shared_ptr<{}>"

or "std::unique_ptr<{}>", where {} represent the replace-
ment field, which in this case will be formatted with the
string int.

Initialisation and assignment expressions are less simple
due to two reasons. First of all, the initialisation of a vari-
able does not necessarily have to occur immediately at the
point of declaration. Therefore we need to find all the points
of initialisation or value assignment to a variable in the AST.
Secondly, there are many different ways to initialise a vari-
able [16, p. 196], with the most common initialisation meth-
ods using:

• Braced-lists std::string s{}.

• Equal sign std::string s = "hello"

• parentheses expression list std::string s("hello")

For pointer variables, this is convoluted even more depend-
ing on if the pointer gets initialised using an existing pointer
int* a = nullptr; int *b = a;, or if it gets initialised us-
ing a new statement auto p = new Circle{Point{0,0},10}.
In the case of a new statement, we can initialise the rewritten
smart pointer using a value initialiser std::make_unique<>()
or the shared pointer equivalent. Otherwise, we can ini-
tialise the rewritten smart pointer from an existing pointer
by using the default equal sign copy initialiser or parentheses
expression list.

Rewriting pointer delete statements also requires us to
traverse the AST to find delete statements for the variable
declaration node that we are rewriting. However, this does
not require any complicated logic and we can upon finding
relevant delete statements simply remove them from the
source code.

5

https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/rzarg/name_mangling.html
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/rzarg/name_mangling.html

char *test() {

char* a = new char('a');
printf("\%c", *a);

return a;

}

std::shared_ptr<char> test() {

std::shared_ptr<char> a =

std::make_shared<char>('a');↪→

printf("\%c", *a.get());

return a;

}

Figure 5: An example of all the rewriting rules except pointer
delete statements. This example solely shows rewriting and
does not necessarily respect any smart pointer viability anal-
yses. We see how both the declaration and equal sign copy
initialisation of a have been rewritten to into a shared_ptr.
All the uses of a that require a raw pointer have a get() call
added to obtain the managed memory.

If the variable declaration is a variable that gets returned
at the end of the function, then the return type of the func-
tion signature will need to be rewritten too. We explicitly
check for each variable declaration that we handle if it gets
returned, and if so, we can rewrite the function return type
the same way that we handle the types of variable declara-
tions.

Lastly, smart pointers have overloaded operators for the
arrow -> and dereference * operators so that they behave
identically as if the value was a raw pointer. This simplifies
our task as it reduces the amount of rewriting we have to
do for each use of the new smart pointer. However, there
is no such overloaded operator for passing smart pointers as
function arguments. In this case, the compiler will find a
type error as it might expect a type such as int *, but ac-
tually receives std::unique_ptr<int>. Therefore, we again
have to traverse the AST to find all function call expressions
which involve the current variable declaration and add get()

calls in order to get a raw pointer to the managed object.
We use the Clang Rewriter11 class as a high level abstraction
compared to handling files and text buffers ourselves.

In Figure 5, we show an example that incorporates all the
cases in which code needs to be rewritten except pointer
delete statements. It is visible how in the majority of cases,
the first two rules will always be applicable as every new
smart pointer needs to have the correct type and be ini-
tialised to an object of the right type. The fifth rule will
also likely be applicable in most cases as variables tend to
not be unused and therefore will be used in functions that
are expecting a raw pointer.

4.6 System Design
We show the full system design diagram in Figure 6, show-

11https://clang.llvm.org/doxygen/classclang_1_
1Rewriter.html

ing the full sequence of operations that are executed in or-
der to transform and refactor the input file containing raw
pointers into the output file that uses smart pointers. The
input file is parsed into a Clang AST, which is traversed
to find variable declarations. The corresponding variable
declaration is found in the IR, and used as input to the
analysis algorithm. The output of the analysis is used in
the rewriting component, after which all the changes made
in rewriting the program are consolidated and output as the
new, improved program.

We believe this design is noteworthy as it closely follows
the system design of the general LLVM infrastructure in
Figure 2, by having a Clang parser front-end, an analysis
middle-end, and a rewriter back-end. We also roughly follow
the pipeline architectural design, as described by Schmidt
et al. [30], by having a series of transformation steps, which
each have an input and one or more outputs. A series
of transformation steps are composed until we obtain our
end output file. This allows us to conform to the Single-
responsibility principle as proposed by Martin [23]. This
gives us a highly flexible design where different analysis algo-
rithms can be very easily added and trialled for the analysis
component, meaning that potentially more powerful analy-
ses can be tested without needing any changed to the parsing
or rewriting components. Similarly, given that our analysis
is executed on the language-agnostic LLVM IR, the anal-
ysis component could be reused by rejuvenation tools for
any other languages, allowing our work to be used in future
research.

5. EVALUATION
Through our research, we would like to answer the ques-

tion of whether our implemented tool can truly improve
C++ code by seeing if the tool can be used not only on
small test examples but also on larger existing programs.
We would also like to determine if the rejuvenation produces
code which can be compiled and can be judged to be better.
Then, if the tool is able to do this, we want to evaluate how
well the tool performs by analysing the effectiveness of the
analysis algorithms.

In order to evaluate the objectives above, hypotheses were
formed:

• Hypothesis 1 The automatic translation of raw pointers
into smart pointers can be used to make existing C++
code more modern and safe.

• Hypothesis 2 The tool can reliably identify situations
in which unique pointers should be used.

Each of these hypotheses will require experimentation to
be verified. We will answer hypothesis 1 through a case
study and we will answer hypothesis 2 through the gathering
of relevant metrics on several more projects. This section
will detail the justification, process, and results for these
experiments.

We run our experiments on a Windows 10 Pro x64 ma-
chine using the Windows Subsystem for Linux, with an AMD
Ryzen 5 PRO 4650U and 16 GiB RAM. The ptr-tidy tool
was compiled with GCC v10.2.0 using CMake release profile,
using Clang and LLVM v11.1.0 libraries.

5.1 TinyXML-2 Case Study

6

https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html

Input.cpp
File

 ptr-tidy

Input.cpp
AST

ClangTool
Parser

VarDecl
Matcher

VarDecl
Match
Result

Analysis Rewriter Rejuvenated.cpp
File

Input.cpp
IR

Analysis
Result

Figure 6: System design diagram of the ptr-tidy tool.

XMLText* XMLDocument::NewText(const char* str)

{

XMLText* text = CreateUnlinkedNode<XMLText>(

_textPool);↪→

text->SetValue(str);

return text;

}

Listing 2: Example of a method in the TinyXML-2 library
which could be refactored to use smart pointers as it returns
an owning pointer to a newly created object.

In order to answer hypothesis 1, it was decided to run a
case study on a specifically chosen C++ project. This was
decided as an analysis into a well chosen target project will
be able to show relevant success and failure cases of the tool.
If the impact of the success cases outweighs the faults of the
failure cases, then we will be able to judge our hypothesis
as being true.

We decided on using the TinyXML-2 12 library as our
chosen case study. TinyXML-2 is a C++ XML parsing li-
brary that can parse an XML document and build from that
a Document Object Model that can be read, modified, and
saved. TinyXML-2 has over three thousand GitHub stars
which puts it in the top 1% of projects on the hosting web-
site, which can be used as a rough metric for its popularity
and good code quality [29]. It is also used in the libigl [17]
geometry processing library, which itself is used by a variety
of large industry companies. It is released under a zlib li-
cense 13 which allows us to use and alter the software. What
makes the library a particularly attractive choice is the sim-
plicity of the library. The library does not make use of the
STL [16], and therefore most importantly does not make use
of smart pointers. The library is also around three thousand
lines of code in length, making it large enough to likely have
a variety of interesting features to analyse, whilst remaining
small enough for manual inspection.

In particular, what makes this suitable for the target of
our case study over perhaps other similarly small and simple
libraries is that due to parsing varying documents at run-
time, the library is particularly heavy in pointer logic and
memory allocations. We can see in Listing 2 an example of
a method from the library which would be well suited for
refactoring to use smart pointers. The heavy use of point-
ers and memory allocation is what leads us to believe that

12https://github.com/leethomason/tinyxml2
13https://opensource.org/licenses/Zlib

[

{

"directory": "/home/artem/tinyxml2",

"command": "/usr/bin/c++ -o

CMakeFiles/tinyxml2.dir/tinyxml2.cpp.o -c

/home/artem/tinyxml2/tinyxml2.cpp",

↪→

↪→

"file": "/home/artem/tinyxml2/tinyxml2.cpp"

}

]

Listing 3: Compilation Database for TinyXML-2

analysis into this library will generalise well onto other C++
projects.

5.1.1 Experiment
We first generate a simple compilation database 14, as seen

in Listing 3, for the TinyXML-2 library, as this is what our
tool uses to resolve compilation options. More complex li-
braries or applications would have their compilation options
and any include and link libraries included in compilation
command. The user of our tool can easily generate a compi-
lation database for the project that they wish to rejuvenate
using their build tool, such as CMake 15.

We can then run the tool on any file which has a compila-
tion command defined in the compilation database, such as
the tinyxml2.cpp file from our chosen library. We include
the result of the analysis as debug messages during the run-
ning of the tool, in order to aid our evaluation of the case
study, such as:

</home/artem/tinyxml2/tinyxml2.cpp:207:70, col:75>

Variable curLineNumPtr escapes↪→

</home/artem/tinyxml2/tinyxml2.cpp:213:5, col:19>

Variable start does not escape↪→

The final rejuvenated version of the TinyXML-2 is in-
cluded as reference 16.

5.1.2 Results and Discussion
We can first and foremost see in Listing 4 the result of the

rejuvenation on our candidate method in Listing 2.

14https://clang.llvm.org/docs/
JSONCompilationDatabase.html

15https://cmake.org/
16https://gist.github.com/a-usov/
155e55afc5d375070c52ad3e4da19072

7

https://github.com/leethomason/tinyxml2
https://opensource.org/licenses/Zlib
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://cmake.org/
https://gist.github.com/a-usov/155e55afc5d375070c52ad3e4da19072
https://gist.github.com/a-usov/155e55afc5d375070c52ad3e4da19072

std::shared_ptr<XMLText> XMLDocument::NewText(

const char* str)↪→

{

std::shared_ptr<XMLText> text =

std::shared_ptr<XMLText>(

CreateUnlinkedNode<XMLText>(_textPool));

↪→

↪→

text->SetValue(str);

return text;

}

Listing 4: Rejuvenated version of the method in Listing 2.
The text variable has been identified as being eligible to be
a shared_ptr. The first, second and fourth of our rewriting
rules are applied in this example to the text variable.

We can see that we achieve a similar refactoring as in
Figure 5. The smart pointer is initialised using the pointer
copy initialiser. We see identical refactoring in the other
XMLDocument:New... methods.

The only case where our tool was able to successfully
refactor the TinyXML-2 library to use the recommended
and more efficient make_shared 17 function is shown in Fig-
ure 7. We see the reason for this being that the TinyXML-2
uses memory allocation abstractions such as memory pools
rather than creating objects directly through their construc-
tors. Such more detailed refactoring would require human
effort.

Not a single function parameter was identified to be non-
escaping, as parameters are included in the analysis of the
program, since the VarDecl Matcher also matches on argu-
ments (ParmVarDecl) as it is a subclass 18. Upon investiga-
tion, this is largely an issue due memory coherence guaran-
tees in the specification of the language [16, p. 66]. Func-
tion pointer parameters are assumed by default to escape
and to possibly be aliased (the memory could possibly be ac-
cessed through a different variable). Therefore by default no
parameters will ever be identified by our analysis as non-
escaping. We can see this in Figure 8, where the variable p

in the generated LLVM IR is not marked as noescape and
noalias 19.

If we enable Clang compiler optimisations when generat-
ing the IR for the C++ code in Figure 8, then the compiler
can now correctly identify that p cannot escape within the
function, giving it a signature in the IR of (i32* nocap-

ture %p). However this would break the AST to IR corre-
spondence that we established in subsection 4.3 as variables
that exist in the AST may find themselves optimised and
removed from the IR or functions can that exist in the AST
may find themselves inlined in the IR. Also, we still do not
have non-aliasing guarantees for the variable p so that we
know that the object has not escaped before entering the
function. It is possible to manually mark a variable in the
code as being non-captured and non-aliased by adding pa-
rameter attributes such as:

17https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#Rr-make_shared

18https://clang.llvm.org/doxygen/classclang_1_
1ParmVarDecl.html

19https://clang.llvm.org/docs/AttributeReference.
html#noalias

XMLAttribute* XMLElement::CreateAttribute()

{

TIXMLASSERT(sizeof(XMLAttribute) ==

_document->_attributePool.ItemSize());↪→

XMLAttribute* attrib = new

(_document->_attributePool.Alloc())

XMLAttribute();

↪→

↪→

TIXMLASSERT(attrib);

attrib->_memPool = &_document->_attributePool;

attrib->_memPool->SetTracked();

return attrib;

}

std::shared_ptr<XMLAttribute>

XMLElement::CreateAttribute()↪→

{

TIXMLASSERT(sizeof(XMLAttribute) ==

_document->_attributePool.ItemSize());↪→

std::shared_ptr<XMLAttribute> attrib =

std::make_shared<XMLAttribute>();↪→

TIXMLASSERT(attrib);

attrib->_memPool = &_document->_attributePool;

attrib->_memPool->SetTracked();

return attrib;

}

Figure 7: Rejuvenation of the CreateAttribute method.
The attrib variable is copy initialised using the default con-
structor rather than a copy initialisation using an already al-
located pointer. Therefore we identified that the new smart
pointer can be initialised using the make_shared function.

void nonescapingFunc(int *p) {

*p += 99;

}

; Function Attrs: noinline nounwind optnone

sspstrong uwtable↪→

define void @_Z15nonescapingFuncPi(i32* %p) #0 {

entry:

%p.addr = alloca i32*, align 8

store i32* %p, i32** %p.addr, align 8

%0 = load i32*, i32** %p.addr, align 8

%1 = load i32, i32* %0, align 4

%add = add nsw i32 %1, 99

store i32 %add, i32* %0, align 4

ret void

}

Figure 8: C++ and equivalent LLVM IR snippet showing
how the function argument p is not considered noescape or
noalias by not having the correct attributes.

8

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared
https://clang.llvm.org/doxygen/classclang_1_1ParmVarDecl.html
https://clang.llvm.org/doxygen/classclang_1_1ParmVarDecl.html
https://clang.llvm.org/docs/AttributeReference.html#noalias
https://clang.llvm.org/docs/AttributeReference.html#noalias

void nonescapingFunc(__attribute__((noescape)) int

* __restrict__ p) {↪→

*p += 100;

}

This relies however on the Clang compiler specific implemen-
tation of the noescape attribute which does not exist in the
GCC compiler, as well as the non-standard, compiler specific
implementation of the restrict attribute. Such code there-
fore is not portable and not standard conforming, making
it likely unacceptable for most projects. The LLVM escape
analysis currently incorrectly identifies parameters with such
attributes to still be escaping, as it is a very rarely occurring
optimisation case.

The impact this has on our tool is that the extent of our
analysis is not as complete as we would like it to be, how-
ever Listing 4 and Figure 7 show that we can still achieve
desirable results through the analysis of local variables.

The tool is particularly effective at refactoring factory
methods [12] such as in Listing 4 and other cases where
resources are created at the top rather than at the bottom
of the function call stack and passed through return values.

The rejuvenated version of the TinyXML-2 library that
the tool produces is not directly compilable into an object
file, mainly due to edge cases in the rewriting component,
causing syntactically incorrect output code. These mainly
stem from the use of now outdated C++ practises. For
example, the initialisation of a pointer using the value 0,
such as XMLNode* returnNode = 0; is not recommended as
they should be initialised with nullptr. The rejuvenation
of the example into

std::shared_ptr<XMLNode> returnNode =

std::shared_ptr<XMLNode>(0);↪→

therefore causes a type error during compilation as the
shared_ptr constructor has stricter type checking.

All of the compilation issues currently stem from unimple-
mented behaviour in the rewriting component rather than
the strength or performance of the analysis. The size and
complexity of the language makes it difficult to ensure that
all edge cases are handled by the rewriting component, which
can in future development be continuously improved. The
fixes that need to be applied in order to compile the rejuve-
nated program can be done manually by the programmer,
with all of the identified fixes in the TinyXML-2 library be-
ing a single line in length.

However, we do not think this detracts from the value
or usefulness of our tool. Our tool provides fully rejuve-
nated and compilable programs without the need for any
human input for simpler input programs. These programs
are modernised to use features such as smart pointers, which
also bring stricter type checking. For larger, more complex
and older input programs some human input is currently
still needed, however the work of our tool allows the pro-
grammer to make their programs more modern and safer
by performing the complex analysis and guiding the pro-
grammer towards the needed fixes through compiler errors.
This results in the rejuvenated output being obtained more
easily by removing the need for the programmer to manu-
ally understand the structure and style of the program and

the often complex ownership relations between the various
variables in the program.

We therefore believe that from the analysis of our tool
on the case study of the TinyXML-2 library, even with the
identified failure cases, the success of the automated trans-
lation and identified success cases allow us to confirm our
first hypothesis.

5.2 Analysis of performance on a corpus of
projects

In order to answer hypothesis 2, it was decided to run
analysis of the tool on more open source projects and gather
metrics on the performance of the tool in terms of its perfor-
mance in successfully identifying pointers can be refactored,
how extensive the rejuvenation is in context of the whole
program, and some general runtime characteristics.

It was decided that whilst gathering more projects to test,
we would continue to focus on simple, single file libraries
similar to TinyXML-2 in order to ease the cost of setting up
each project to be used by the tool. We used a list of sin-
gle file, public-domain/open source libraries with minimal
dependencies [4] by acknowledged game and software devel-
oper Sean Barret 20 to discover as many as possible candi-
date libraries. This list also ensures that we select projects
from many areas of software engineering such as graphics
and geometry to file parsers. This ensures that we run the
tool across a wide variety of projects which will have dif-
ferent distributions and usages of memory allocations and
pointer use, giving greater validity that our tool is able to
generalise to any type of project. We filtered projects from
the list that are C++ only, do not already use smart point-
ers and have at least one dynamic memory allocation and
are not header-only. With this, we arrived at the following
list of selected projects:

• Clipper for clipping and offsetting lines and polygons 21.

• HappyHTTP for issuing HTTP requests and process-
ing responses 22.

• MicroPather for path finding and A* solving. 23.

• Jzon for JSON parsing 24.

• Poisson Disk Points Generator 25.

• PolyPartition for polygon partition and triangulation 26.

• TinyXML-2 for XML parsing 27.

• Xatlas for generating unique texture coordinates suit-
able for baking lightmaps or texture painting 28.

20https://www.mobygames.com/developer/sheet/view/
developerId,4966/

21http://www.angusj.com/delphi/clipper.php
22http://scumways.com/happyhttp/happyhttp.html
23http://www.grinninglizard.com/MicroPather/
24https://github.com/Zguy/Jzon
25https://github.com/corporateshark/
poisson-disk-generator

26https://github.com/ivanfratric/polypartition
27https://github.com/leethomason/tinyxml2
28https://github.com/jpcy/xatlas

9

https://www.mobygames.com/developer/sheet/view/developerId,4966/
https://www.mobygames.com/developer/sheet/view/developerId,4966/
http://www.angusj.com/delphi/clipper.php
http://scumways.com/happyhttp/happyhttp.html
http://www.grinninglizard.com/MicroPather/
https://github.com/Zguy/Jzon
https://github.com/corporateshark/poisson-disk-generator
https://github.com/corporateshark/poisson-disk-generator
https://github.com/ivanfratric/polypartition
https://github.com/leethomason/tinyxml2
https://github.com/jpcy/xatlas

clipper happyhttp jzon micropather poisson polypartition tinyxml2 xatlas

Runtime (ms) 146.521 10.540 3.140 2.429 4.471 11.885 16.055 105.212
Escaped Pointer 94 22 2 39 7 46 164 235
Non-Escaped Pointers 132 16 3 34 3 22 84 111
Lines of Code Changed 205 27 3 57 6 31 142 154
Total Lines of Code 5035 1273 1324 1587 523 2270 5366 10318

Table 1: Data gathered from the rejuvenation of each projects. Total lines of code include both the implementation and header
file of each project. Runtime measured in milliseconds as the median of five runs.

cli
pp

er

ha
pp

yh
ttp jzo

n

m
icr

op
at

he
r

po
iss

on

po
ly

pa
rti

tio
n

tin
yx

m
l2

xa
tla

s0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

fa
ct

or
ed

 p
oi

nt
er

s

2000 4000 6000 8000 10000
Total Lines of Code

0
50

100
150
200
250
300
350
400

Nu
m

be
r o

f p
oi

nt
er

s

clipper

happyhttp
jzon

micropather

poisson

polypartition

tinyxml2

xatlas

Figure 9: First graph shows the fraction of non-escaped pointers for each project. This varies from a minimum of 30% up to a
maximum of 60%, with a mean of 42%. The second graph shows the number of total pointers compared to the number of total
lines in each project.

cli
pp

er

ha
pp

yh
ttp jzo

n

m
icr

op
at

he
r

po
iss

on

po
ly

pa
rti

tio
n

tin
yx

m
l2

xa
tla

s0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
rc

en
ta

ge
 o

f c
ha

ng
ed

 li
ne

s

Figure 10: Graph showing the fraction of modified lines by the tool compared to the total number of lines in each project, which
is the combination of implementation and header files. This varies from a minimum of 0.22% up to a maximum of 4.07%, with
a mean of 2.18%.

10

103 104

Total Lines of Code (log)

0

20

40

60

80

100

120

140
Ti

m
e

(m
illi

se
co

nd
s)

clipper

happyhttp
jzon micropatherpoisson

polypartition tinyxml2

xatlas

101 102

Total Number of Pointers Analysed (log)

0

20

40

60

80

100

120

140

Ti
m

e
(m

illi
se

co
nd

s)

clipper

happyhttp
jzon micropatherpoisson

polypartition tinyxml2

xatlas

Figure 11: Graphs of the tool runtime versus the total lines of code in each project and the total number of pointers that was
analysed. The x axis for both graphs are plotted on a log scale. This is for clarity purposes in order to emphasise the two outliers
consisting of the Clipper and Xatlas libraries. Time was measured in microsecond using the Bash time command and measured
as the median real execution time of 5 runs.

We first modified the tool to include a simple counter for
how many pointers that are analysed are identified as es-
caping and how many as non-escaping. We also disabled
any output of debug messages in order to not skew the tool
runtime with writing large amounts of text, other than the
output rejuvenated program, as this is the essential func-
tion of the tool. We measure the runtime of the tool on
each project as the median of five runs, on a machine with
no other programs running, recording the pointer analysis
statistics as well. We measure the number of lines changed
by using the output of the Linux diff command on the re-
juvenated and original files. We show the raw data of the
gathered metrics in Table 1.

5.2.1 Results and Discussion
We see first of all in Figure 9 that our tool has consistent

behaviour across the various projects, with 4 projects having
between 30% and 40% of pointers identified for refactoring
and 4 other projects having between 40% and 60% of point-
ers identified. The mean of 42% shows that we are able to
identify a non-trivial amount of pointers, however it is un-
clear this is not higher because of a fault in the analysis or
whether this is the typical performance for a conservative
analysis. The second graph in Figure 9 also shows how the
amount of pointers in a project as the size of the project
increases is close to linear. This is a surprising result as
we expected that different project in different areas of com-
puter science of the same length would utilise vastly differ-
ent amounts of memory allocations and use vastly different
amounts of pointers. There seems to be no relationship be-
tween the 4 projects that had over 40% of pointers identified
and their lengths. We therefore conclude that the size of a
project that the tool has to rejuvenate has no impact on its
performance.

Figure 10 shows the number of lines that were modified in
the rejuvenated version of the project compared to the origi-
nal. We can much more clearly see our previous expectation
that some projects utilise pointers more and other less. The
two projects with the lowest amount of modified lines, Jzon
and the Poisson Disk Points Generator both only had ten
or less pointers to analyse in total, with the Jzon library in

particular only having three changed lines from the original.
Manual investigation of the Jzon library shows that even
though it is a parsing library like TinyXML-2, the amount
of code limited to memory allocations and pointers is very
minimal. We therefore again conclude that it seems like the
tool is able to generalise well to different input programs.

Lastly, Figure 11 shows two graphs, plotting the runtime
of the tool on the selected projects versus the lines of code
and number of pointers that they contain. Unlike usual
refactoring tools, our tool as a rejuvenation tool is only in-
tended to be run once on a code base, compared to a tool
such as clang-tidy 29 which is usually invoked many times.
Therefore, we do not have a strict requirement on a fast pro-
cessing time. However, we can see that for the majority of
projects, the processing remains under twenty milliseconds,
even as the number of lines of code increases to over 5000.
We see a linear relationship in both of the graphs, except
for the outliers of the Clipper and Xatlas libraries. We were
unable to establish why these libraries take an exception-
ally longer time to process, especially since the TinyXML-2
library has a similar amount of lines of code and analysed
pointers as the Clipper library. This gives us confidence that
the use of our tool would scale well onto even larger projects
and therefore as useful as possible.

To conclude, we believe we can partially confirm our sec-
ond hypothesis. We show that the tool generalises to a range
of other libraries apart from the TinyXML-2 library selected
in our case study and show that our analysis achieves similar
results across all these libraries. However, what we cannot
conclude is the accuracy of our tool in terms of the best case
performance. We were not able to find in the literature an
estimate for the fraction of code that is used for memory
management, nor are we able to confirm that our analysis
achieves the best possible result out of any possible analysis
that could be implemented.

6. CONCLUSIONS
In this paper, we present the problem of manual memory

management in C++ and how it can create the opportunity

29https://clang.llvm.org/extra/clang-tidy/

11

https://clang.llvm.org/extra/clang-tidy/

for exploitable memory safety errors. We show how modern
C++, that is the C++ 11 standard and newer, encourage
the use of smart pointers instead for memory management.
Smart pointers create resource handles which automatically
get released when the handle exits the scope of a function
or method. This referred to as RAII (Resource Acquisition
is Initialisation). We also highlight the eventual increasing
need for automatic rejuvenation, the replacement of out-
dated coding patterns with newer, higher-level abstractions,
of maintained projects as languages move and evolve much
quicker than can be supported in enterprise environments.

We then introduce our ptr-tidy tool in order to auto-
matically rejuvenate code that does not use smart pointers,
thereby solving our first problem. We show the design and
implementation of the tool, which uses the Clang and LLVM
libraries. The tool uses Clang and the Clang abstract syntax
tree (AST) in order to obtain a rich and closely resembling
representation of the input program. The tool then uses
the equivalent representation of the input program in the
lower-level LLVM intermediate representation (IR) in order
to analyse which pointers are suitable to be unique point-
ers or shared pointers. The AST and output of the analysis
are then input to a rewriting component which creates and
outputs our final rejuvenated program. This design is the
solution to our second problem, as we believe this design is
both generic, reusable and powerful enough to be used for a
variety of rejuvenations. The design of the LLVM IR allows
for powerful and efficient analyses to be performed, whilst its
language agnostic nature allows a variety of possible parsing
front-ends and output back-ends to be used, such as existing
mature implementations available for C++ or Rust.

Our evaluation showed that our tool can effectively be
used to rejuvenate a set of simple open-source libraries, with
a specific in depth analysis into the TinyXML-2 library that
showed correct rejuvenations in object factory methods. We
observe that the tool is particularly effective at rejuvenating
specific cases in programs where dynamic resources are cre-
ated at the top of the function call stack and passed down
the stack through return values. We also discovered that due
to limitations in the specification of the C++ language, we
are unable to rejuvenate function parameters, which meant
the extent of our rejuvenation had limits. The successful
application of the tool across a varied set of open-source
projects allowed us to conclude that the analysis and design
of the tool were indeed suitable for refactoring generic C++
programs.

6.1 Future Work
The escape analysis algorithm described by Choi et al. [5]

is used as the default escape analysis algorithm in the Or-
acle Java Virtual Machine implementation 30 and is widely
cited [36, 31]. Most importantly, the authors present an
interprocedural analysis which we hypothesise could bring
greater effectiveness to our tool as we believe that it could
lead to improved analysis performance compared to our im-
plemented intraprocedural analysis. The similarity of Java
and C++ as object oriented languages should allow for a
direct application of the algorithm in C++.

Secondly, we mention in subsection 5.1 that we are unable
to enable optimising compiler invocations for generating the

30https://docs.oracle.com/en/java/javase/16/vm/
java-hotspot-virtual-machine-performance-enhancements.
html

LLVM IR as it breaks our AST to IR correspondence. How-
ever, it remains to be investigated whether these optimisa-
tions can be called dynamically during the running of our
tool in order to gain insight into conservative assumptions
that we currently have to make.

In terms of the evaluation of the tool, we would like to
extend it with more complex, multi-file projects and deter-
mine whether the translation unit barrier, where an analysis
pass can only access the current implementation file, has an
impact on analysis performance. An inter-modular analysis,
similar to existing link time optimisations in compilers 31,
can then be evaluated whether it brings greater analysis per-
formance.

Acknowledgements.
I would like to thank my supervisor Dr Jeremy Singer

for his guidance and feedback throughout the duration of
the project. I would also like to thank my family for their
continued support.

References
[1] J. Afek and A. Sharabani. Dangling pointer: Smashing

the pointer for fun and profit, 2007.

[2] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers.
Leveraging Rust types for modular specification and
verification. Proceedings of the ACM on Programming
Languages, 3(Oopsla):1–30, 2019.

[3] A. Balasubramanian, M. S. Baranowski, A. Burtsev,
A. Panda, Z. Rakamari ć, and L. Ryzhyk. System pro-
gramming in Rust: Beyond safety. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems,
pages 156–161, 2017.

[4] S. Barrett. Single-file public-domain/open source li-
braries with minimal dependencies, 2019. URL https:

//github.com/nothings/single%5Ffile%5Flibs.

[5] J. D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. SIGPLAN
Notices (ACM Special Interest Group on Programming
Languages), 1999. doi: 10.1145/320385.320386.

[6] G. E. Collins. A method for overlapping and erasure
of lists. Communications of the ACM, 3(12):655–657,
1960.

[7] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.
Memory safety without runtime checks or garbage col-
lection. In Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embed-
ded systems, pages 69–80, 2003.

[8] P. Dimov, B. Dawes, and G. Colvin. N1450: A Proposal
to Add General Purpose Smart Pointers to the Library
Technical Report. C++ Standards Committee Papers,
2003.

[9] G. Dos Reis and B. Stroustrup. A principled, complete,
and efficient representation of C++. Mathematics in
Computer Science, 5(3):335–356, 2011.

31https://llvm.org/docs/LinkTimeOptimization.html

12

https://docs.oracle.com/en/java/javase/16/vm/java-hotspot-virtual-machine-performance-enhancements.html
https://docs.oracle.com/en/java/javase/16/vm/java-hotspot-virtual-machine-performance-enhancements.html
https://docs.oracle.com/en/java/javase/16/vm/java-hotspot-virtual-machine-performance-enhancements.html
https://github.com/nothings/single%5Ffile%5Flibs
https://github.com/nothings/single%5Ffile%5Flibs
https://llvm.org/docs/LinkTimeOptimization.html

[10] E. B. Duffy, B. A. Malloy, and S. Schaub. Exploiting
the Clang AST for analysis of C++ applications. In
Proceedings of the 52nd annual ACM southeast confer-
ence, 2014.

[11] J.-M. Favre. Languages evolve too! changing the soft-
ware time scale. In Eighth International Workshop on
Principles of Software Evolution (IWPSE’05), pages
33–42. Ieee, 2005.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. El-
ements of Reusable Object-Oriented Software. Pearson
Education India, 1995.

[13] A. Gaynor and G. Thomas. Linux Kernel Modules
in Rust. In Proceedings of the Linux Security Summit
North America 2019, 2019.

[14] D. Hosfelt. Implications of Rewriting
a Browser Component in Rust, 2019.
URL https://hacks.mozilla.org/2019/02/

rewriting-a-browser-component-in-rust/.

[15] A. Hück, J. Utke, and C. Bischof. Source transfor-
mation of C++ codes for compatibility with operator
overloading. Procedia Computer Science, 80:1485–1496,
2016.

[16] ISO. ISO/IEC 14882:2017 Information technology —
Programming languages — C++. International Orga-
nization for Standardization, fifth edition, Dec. 2017.
URL https://www.iso.org/standard/68564.html.

[17] A. Jacobson, D. Panozzo, et al. libigl: A
simple C++ geometry processing library, 2018.
https://libigl.github.io/.

[18] A. Kumar, A. Sutton, and B. Stroustrup. Rejuvenat-
ing C++ programs through demacrofication. In 2012
28th IEEE International Conference on Software Main-
tenance (ICSM), pages 98–107. Ieee, 2012.

[19] C. Lattner. LLVM and Clang: Next generation com-
piler technology. In The BSD conference, volume 5,
2008.

[20] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation.
International Symposium on Code Generation and Op-
timization, 2004. doi: 10.1109/cgo.2004.1281665.

[21] Y. Lin, S. M. Blackburn, A. L. Hosking, and M. Nor-
rish. Rust as a language for high performance GC im-
plementation. ACM SIGPLAN Notices, 51(11):89–98,
2016.

[22] J. Martin. Rapid application development. Macmillan
Publishing Co., Inc., 1991.

[23] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall, 2002.

[24] B. G. Mateus and M. Martinez. An empirical study
on quality of Android applications written in Kotlin
language. Empirical Software Engineering, 24(6):3356–
3393, 2019.

[25] M. Miller. Trends, challenge, and shifts in software
vulnerability mitigation, 2019. URL https://github.

com/microsoft/MSRC-Security-Research/tree/

master/presentations/2019%5F02%5FBlueHatIL.

[26] J. L. Overbey and R. E. Johnson. Regrowing a lan-
guage: refactoring tools allow programming languages
to evolve. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems
languages and applications, pages 493–502, 2009.

[27] P. Pirkelbauer, D. Dechev, and B. Stroustrup. Source
code rejuvenation is not refactoring. In International
Conference on Current Trends in Theory and Practice
of Computer Science, pages 639–650. Springer, 2010.

[28] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global
value numbers and redundant computations. In Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages
12–27, 1988.

[29] A. Sanatinia and G. Noubir. On GitHub’s Program-
ming Languages. arXiv preprint arXiv:1603.00431,
2016.

[30] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-oriented software architecture, patterns for
concurrent and networked objects, volume 2. John Wi-
ley & Sons, 2013.

[31] L. Stadler, T. Würthinger, and H. Mössenböck. Par-
tial escape analysis and scalar replacement for Java. In
Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, pages
165–174, 2014.

[32] B. Stroustrup. The C++ programming language. Pear-
son Education India, 2000.

[33] B. Stroustrup. A Tour of C++. Addison-Wesley Pro-
fessional, 2018.

[34] G. Thomas. A proactive approach to
more secure code, 2019. URL https:

//msrc-blog.microsoft.com/2019/07/16/

a-proactive-approach-to-more-secure-code/.

[35] A. Usov. ptr-tidy, 2021. URL https://github.com/

a-usov/ptr-tidy.

[36] C. Wang, M. Zhang, Y. Jiang, H. Zhang, Z. Xing, and
M. Gu. Escape from escape analysis of Golang. In Pro-
ceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering: Software Engineering in
Practice, pages 142–151, 2020.

[37] H. K. Wright, D. Jasper, M. Klimek, C. Carruth,
and Z. Wan. Large-scale automated refactoring using
ClangMR. In 2013 IEEE International Conference on
Software Maintenance, pages 548–551. Ieee, 2013.

13

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://www.iso.org/standard/68564.html
https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019%5F02%5FBlueHatIL
https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019%5F02%5FBlueHatIL
https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019%5F02%5FBlueHatIL
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://github.com/a-usov/ptr-tidy
https://github.com/a-usov/ptr-tidy

	Introduction
	Related Work
	Background
	Using Smart Pointers for Memory Management
	Clang and LLVM

	Methodology
	Parsing
	Analysis
	Analysis Target
	Choice of Escape Analysis Algorithm
	Source code rewriting
	System Design

	Evaluation
	TinyXML-2 Case Study
	Experiment
	Results and Discussion

	Analysis of performance on a corpus of projects
	Results and Discussion

	Conclusions
	Future Work

